Abstract
A crucial problem for many global optimization methods is how to handle partition sets whose feasibility is not known. This problem is solved for broad classes of feasible sets including convex sets, sets defined by finitely many convex and reverse convex constraints, and sets defined by Lipschitzian inequalities. Moreover, a fairly general theory of bounding is presented and applied to concave objective functions, to functions representable as differences of two convex functions, and to Lipschitzian functions. The resulting algorithms allow one to solve any global optimization problem whose objective function is of one of these forms and whose feasible set belongs to one of the above classes. In this way, several new fields of optimization are opened to the application of global methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.