Abstract
Obtaining guaranteed lower bounds for problems with unknown algebraic form has been a major challenge in derivative-free optimization. In this work, we present a deterministic global optimization method for black-box problems where the derivatives are not available or it is computationally expensive to obtain. However, a global upper bound on the diagonal Hessian elements is known. An edge-concave underestimator (Hasan in J Glob Optim 71:735–752, 2018) can be then constructed with vertex polyhedral solution. Evaluating this underestimator only at the vertices leads to a valid lower bound on the original black-box problem. We have implemented this lower bounding technique within a branch-and-bound framework and assessed its computational performance in locating $$\epsilon $$-global optimal solution for several box-constrained, nonconvex black-box functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.