Abstract
The ability to deterministically generate genuine multi-partite entanglement is fundamental for the advancement of quantum information science. We show that the interaction between entangled twin beams of light and an atomic ensemble under conditions for electromagnetically induced transparency leads to the generation of genuine hybrid tri-partite entanglement between the two input fields and the atomic ensemble. In such a configuration, the system is driven through dissipation to a steady state given by the hybrid entangled state. To show the presence of the genuine hybrid entanglement, we introduce a new approach to treat the atomic operators that makes it possible to show a violation of a tri-partite entanglement criterion based on the properties of the two optical fields and collective properties of the atomic ensemble. Additionally, we show that while neither of the input optical fields exhibits single beam quadrature squeezing, as the fields propagate through the atomic medium, their individual quadratures can become squeezed and in some cases oscillate between the presence and absence of squeezing. Finally, we propose a technique to characterize the tri-partite entanglement through joint measurements of the fields leaving the atomic medium, making such an approach experimentally accessible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.