Abstract

The study of entanglement between discrete and continuous variables is an important theoretical and experimental topic in quantum information processing, for which entanglement swapping is one of the interesting elements. Entanglement swapping allows two particles without interacting with each other in any way, to form an entangled state by the action of another pair of entangled particles. In this paper, we propose an experimentally feasible scheme to realize deterministic entanglement swapping in the hybrid system with discrete and continuous variables. The process is achieved by preparing two pairs of entangled states, each is formed by a qubit and two quasi-orthogonal coherent state elements of a cavity, performing a Bell-state analysis through nonlocal operations on the continuous variable states of the two cavities, and projecting the two qubits into a maximally entangled state. The present scheme may be applied to other physical systems sustaining such hybrid discrete and continuous forms, providing a typical paradigm for entanglement manipulation through deterministic swapping operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call