Abstract

The Basel earthquake of 18 October 1356 is considered one of the most serious earthquakes in Europe in recent centuries (I0 = IX, M ≈ 6.5–6.9). In this paper we present ground motion simulations for earthquake scenarios for the city of Basel and its vicinity. The numerical modeling combines the finite extent pseudodynamic and kinematic source models with complex local structure in a two‐step hybrid three‐dimensional (3‐D) finite difference (FD) method. The synthetic seismograms are accurate in the frequency band 0–2.2 Hz. The 3‐D FD is a linear explicit displacement formulation using an irregular rectangular grid including topography. The finite extent rupture model is adjacent to the free surface because the fault has been recognized through trenching on the Reinach fault. We test two source models reminiscent of past earthquakes (the 1999 Athens and the 1989 Loma Prieta earthquake) to represent Mw ≈ 5.9 and Mw ≈ 6.5 events that occur approximately to the south of Basel. To compare the effect of the same wave field arriving at the site from other directions, we considered the same sources placed east and west of the city. The local structural model is determined from the area's recently established P and S wave velocity structure and includes topography. The selected earthquake scenarios show strong ground motion amplification with respect to a bedrock site, which is in contrast to previous 2‐D simulations for the same area. In particular, we found that the edge effects from the 3‐D structural model depend strongly on the position of the earthquake source within the modeling domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.