Abstract
The study of brain electrical activities in terms of deterministic nonlinear dynamics has recently received much attention. Forbidden ordinal patterns (FOP) is a recently proposed method to investigate the determinism of a dynamical system through the analysis of intrinsic ordinal properties of a nonstationary time series. The advantages of this method in comparison to others include simplicity and low complexity in computation without further model assumptions. In this paper, the FOP of the EEG series of genetic absence epilepsy rats from Strasbourg was examined to demonstrate evidence of deterministic dynamics during epileptic states. Experiments showed that the number of FOP of the EEG series grew significantly from an interictal to an ictal state via a preictal state. These findings indicated that the deterministic dynamics of neural networks increased significantly in the transition from the interictal to the ictal states and also suggested that the FOP measures of the EEG series could be considered as a predictor of absence seizures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.