Abstract

It is a significant subject to explore effective quantum communication protocol and enhance the efficiency of the transmission process in noisy environments. In this paper, we investigate the bidirectional controlled remote preparation of an arbitrary single-qubit state in the presence of dissipative environments by using two EPR states as the entanglement source. We first construct the quantum circuit of our scheme by means of unitary matrix decomposition procedure, then the effects of the Markovian and non-Markovian environmental noises acting on the EPR states are considered through the analytical derivation and numerical calculations of the corresponding average fidelity. Moreover, we adopt two methods of weak measurement reversal (WMR) and detuning modulation to improve the average fidelity. Our results show that the average fidelity can be remarkably enhanced under appropriate conditions of the WMR strength and the detuning. Compared with the average fidelity behaviors in dissipative environments, it is also shown that the two methods for fidelity improvement are more efficient in the non-Markovian regime than in the Markovian regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.