Abstract
Compressed sensing is a sampling technique which provides a fundamentally new approach to data acquisition. Comparing with traditional methods, compressed sensing makes full use of sparsity so that a sparse signal can be reconstructed from very few measurements. A central problem in compressed sensing is the construction of sensing matrices. While random sensing matrices have been studied intensively, only a few deterministic constructions are known. Inspired by algebraic geometry codes, we introduce a new deterministic construction via algebraic curves over finite fields, which is a natural generalization of DeVore's construction using polynomials over finite fields. The diversity of algebraic curves provides numerous choices for sensing matrices. By choosing appropriate curves, we are able to construct binary sensing matrices which are superior to Devore's ones. We hope this connection between algebraic geometry and compressed sensing will provide a new point of view and stimulate further research in both areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.