Abstract

We formulate and investigate the problem of distributed channel rendezvous in collision-prone wireless networks. Existing researches on this topic are mainly devoted to designing channel hopping sequences, each pair of which can overlap on a common channel within bounded delay. However, this overlap-based canonical rendezvous design does not take into account channel collision, which may render existing rendezvous algorithms fail to achieve bounded delay in collision-prone environment. Motivated by this observation, we formulate and investigate the collision-aware channel rendezvous problem in a generic scenario, where a collision occurs if more than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula> packets overlap in time on a same channel. Our generic formulation allows to model both the baseline single packet reception model with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$C=1$ </tex-math></inline-formula> and the more sophisticated multiple packet reception model with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$C &gt; 1$ </tex-math></inline-formula> . We further abstract the collision-aware rendezvous problem as the problem of constructing a robust rendezvous system. We establish the theoretical limit of the problem, guided by which we design a collision-resilient distributed rendezvous algorithm with truly bounded rendezvous delay. We then demonstrate the performance of our rendezvous algorithm both analytically and numerically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call