Abstract

The association between intrinsic noises and deterministic descriptions/properties of the rate equations for chemical reactions is analyzed using the linear noise approximation of the master equation. We illustrate that the effect of intrinsic noise is determined in combination by three components: the system size, the matrix associated with reaction kinetics, and the eigenvalues associated with the system's dissipation. Generally, a more attractive dynamics tends to attenuate the internal fluctuations more significantly because intrinsic noises are inversely proportional to the absolute value of the real part of the eigenvalues. In addition, a higher reaction rate and larger stoichiometry coefficients will give rise to stronger intrinsic noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.