Abstract

To evaluate the performance of future microcellular IMT-2000 modems, simple physical models are required, so that a number of system characteristics, such as the signal bandwidth, the antenna beamwidth, or the base station height can be accounted for at a limited computational cost. This paper describes a deterministic three-dimensional electromagnetic model, which allows simulation of the radiowave propagation for microcellular wide-band communication systems in urban areas. The model is based on a UTD ray-tracing tool and makes use of an improved mirror method. Simulated power-delay profiles are plotted against measured power-delay profiles recorded at 1.87 GHz in a street of Louvain-la-Neuve, Belgium, by means of an 80-MHz channel sounder. Despite several discrepancies, a satisfying matching is found considering three orders of reflection and single diffraction. Predictions of rms delay-spread accounting for the sounder limited bandwidth are presented. Finally, simulated and measured channels are also compared through the resulting performance of a typical IMT-2000 service in the presence of multiple access interference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.