Abstract
In a graph, k-bootstrap percolation is a process by which an “infection” spreads from an initial set of infected vertices, according to the rule that on each iteration an uninfected vertex with k infected neighbors becomes infected. This process continues until either every vertex is infected or every uninfected vertex has fewer than k infected neighbors. We are particularly interested in the case where every vertex is eventually infected. The cardinality of a smallest set that results in this is the k-bootstrap percolation number of the graph. In this paper, we determine the k-bootstrap percolation number for trees of small diameter, spiders, complete N-ary trees, and caterpillars. For these graph families we also consider the smallest number of iterations needed for any smallest set to spread to the entire graph. Finally, we give an upper bound for the k-bootstrap percolation number for general trees which improves upon previous results.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.