Abstract

Controllable strong interactions between a nanocavity and a single emitter is important to manipulating optical emission in a nanophotonic systems but challenging to achieve. Here a three-dimensional DNA origami, named as DNA rack (DR) is proposed and demonstrated to deterministically and precisely assemble single emitters within ultra-small plasmonic nanocavities formed by closely coupled gold nanorods (AuNRs). The DR uniquely possesses a saddle shape with two tubular grooves that geometrically allows a snug fit and linearly align two AuNRs with a bending angle <10{\deg}. It also includes a spacer at the saddle point to maintain the gap between AuNRs as small as 2-3 nm, forming a nanocavity estimated to be 20 nm3 and an experimentally measured Q factor of 7.3. A DNA docking strand is designed at the spacer to position a single fluorescent emitter at nanometer accuracy within the cavity. Using Cy5 as a model emitter, a ~30-fold fluorescence enhancement and a significantly reduced emission lifetime (from 1.6 ns to 670 ps) were experimentally verified, confirming significant emitter-cavity interactions. This DR-templated assembly method is capable of fitting AuNRs of variable length-to-width aspect ratios to form anisotropic nanocavities and deterministically incorporating different single emitters, thus enabling flexible design of both cavity resonance and emission wavelengths to tailor light-matter interactions at nanometer scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.