Abstract
AbstractThe cover time is the expected time it takes a random walk to cover all vertices of a graph. Despite the fact that it can be approximated with arbitrary precision by a simple polynomial time Monte‐Carlo algorithm which simulates the random walk, it is not known whether the cover time of a graph can be computed in deterministic polynomial time. In the present paper we establish a deterministic polynomial time algorithm that, for any graph and any starting vertex, approximates the cover time within polylogarithmic factors. More generally, our algorithm approximates the cover time for arbitrary reversible Markov chains. The new aspect of our algorithm is that the starting vertex of the random walk may be arbitrary and is given as part of the input, whereas previous deterministic approximation algorithms for the cover time assume that the walk starts at the worst possible vertex. In passing, we show that the starting vertex can make a difference of up to a multiplicative factor of $\Theta(n^{3/2}/\sqrt{\log\, n})$ in the cover time of an n‐vertex graph. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 23: 1–22, 2003
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.