Abstract

Our understanding of predator–prey systems has progressed in recent decades mainly due to the ability to test models in chemostats. This study aimed to develop a deterministic model using differential equations to reproduce the dynamics of the interaction of a predator and a prey in a two stage chemostat focusing in the proposed previous prey dependent model of Fussmann et al. (2000) [Fussmann, G.F., Ellner, S.P., Shertzer, K.W., Hairston Jr., N.G., 2000. Crossing the Hopf bifurcation in a live predator–prey system. Science 290, 1358–1360]. The main problem with that model, but parameterized with the values obtained in this study (particularly the concentration of nutrient), was that the temporal trajectory of both the prey and the predator showed very high peaks that eventually led to the extinction of predator in all cases. In the same way the experimental time series obtained in this study does not exhibit the behavior predicted by the model of Fussman et al. On the contrary, as prey density increases, the system actually becomes more stable. Finally, the model that best explained the behavior of the predator and prey in the chemostat, at medium to high dilution rates, was the ratio dependent (algae–nitrogen) model with mutual interference measured in the chemostat (rotifer–alga) and that incorporated the age structure of the predator. Qualitative analysis of the dynamic behavior enabled evaluation of coexistence at equilibrium, coexistence on limit cycles, extinction of the predator or extinction of both populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.