Abstract

We investigate the dynamics of a three-dimensional mine-shaped body falling through water deterministically and stochastically. A physics-based deterministic model, MINE6D, is developed for the prediction of the six degree-of-freedom motion of the body falling freely through water. In MINE6D, the hydrodynamic load due to the added inertia effect is obtained exactly by using a boundary-element method while the viscous drag associated with flow separation and vortex shedding is modeled using a quasi-steady approach. Since the mine motion is found to be highly sensitive to varying the physical parameters such as body geometry, mass distribution, and initial releasing conditions, we develop a stochastic model using Monte-Carlo MINE6D simulation for the statistical analysis of mine motions in practical applications. The statistical prediction is compared with available field measurements both qualitatively and quantitatively. The characteristic features and dependence on physical parameters of the statistical prediction of mine motions are investigated. The present study is of importance to the prediction of mine burial in seabed and the design of mines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.