Abstract

In this paper, deterministic and stochastic models are proposed to study the transmission dynamics of the Coronavirus Disease 2019 (COVID-19) in Wuhan, China. The deterministic model is formulated by a system of ordinary differential equations (ODEs) that is built upon the classical SEIR framework. The stochastic model is formulated by a continuous-time Markov chain (CTMC) that is derived based on the ODE model with constant parameters. The nonlinear CTMC model is approximated by a multitype branching process to obtain an analytical estimate for the probability of a disease outbreak. The local and global dynamics of the disease are analyzed by using the deterministic model with constant parameters, and the result indicates that the basic reproduction number $ \mathcal{R}_0 $ serves as a sharp disease threshold: the disease dies out if $ \mathcal{R}_0\le 1 $ and persists if $ \mathcal{R}_0 > 1 $. In contrast to the deterministic dynamics, the stochastic dynamics indicate that the disease may not persist when $ \mathcal{R}_0 > 1 $. Parameter estimation and validation are performed to fit our ODE model to the public reported data. Our result indicates that both the exposed and infected classes play an important role in shaping the epidemic dynamics of COVID-19 in Wuhan, China. In addition, numerical simulations indicate that a second wave of the ongoing pandemic is likely to occur if the prevention and control strategies are not implemented properly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.