Abstract
This paper proposes a supervisory control structure for networked systems with time-varying delays. The control structure, in which a supervisor triggers the most appropriate controller from a multi-controller unit, aims at improving the closed-loop performance relative to what can be obtained using a single robust controller. Our analysis considers average dwell-time switching and is based on a novel multiple Lyapunov–Krasovskii functional. We develop stability conditions that can be verified by semi-definite programming, and show that the associated state feedback synthesis problem also can be solved using convex optimization tools. Extensions of the analysis and synthesis procedures to the case when the evolution of the delay mode is described by a Markov chain are also developed. Simulations on small and large-scale networked control systems are used to illustrate the effectiveness of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.