Abstract

The relationship between chaos and overturning in the rocking response of a rigid object under periodic excitation is examined from both deterministic and stochastic points of view. A stochastie extension of the deterministic Melnikov function (employed to provide a lower bound for the possible chaotic domain in parameter space) is derived by taking into account the presence of random noise. The associated Fokker-Planck equation is derived to obtain the joint probability density functions in state space. It is shown that global behavior of the rocking motion can be effectively studied via the evolution of the joint probability density function. A mean Poincare mapping technique is developed to average out noise effects on the chaotic response to reconstruct the embedded strange attractor on the Poincare section. The close relationship between chaos and overturning is demonstrated by examining the structure of the invariant manifolds. It is found that the presence of noise enlarges the boundary of possible chaotic domains in parameter space and bridges the domains of attraction of coexisting responses. Numerical results consistent with the Foguel alternative theorem, which discerns asymptotic stabilities of responses, indicate that the overturning attracting domain is of the greatest strength. The presence of an embedded strange attractor (reconstructed using the mean Poincare mapping technique) indicates the existence of transient chaotic rocking response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call