Abstract

Quantum teleportation, disembodied transfer of the unknown quantum state between two locations, has been experimentally demonstrated for both discrete and continuous variable states in one degree of freedom (DOF). Generally, multiple DOFs are needed to fully characterize a quantum state. Therefore, to implement intact quantum teleportation, multiple DOFs of quantum state should be teleported simultaneously. Recently, teleporting a single photon encoded in two DOFs has been experimentally demonstrated in discrete variable regime. However, the teleportation of more than two DOFs remains unexplored. Here, by utilizing continuous variable hyperentanglement in four DOFs (azimuthal and radial indexes of Laguerre-Gaussian mode, frequency, and polarization), we experimentally demonstrate deterministic all-optical quantum teleportation of four DOFs. Moreover, we experimentally construct 24 parallel teleportation channels. Our results pave the way for deterministically implementing multiple-DOF quantum communication protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call