Abstract

Motivated by a micromechanical determinist-probabilistic model coupled with damage recently developed by the authors, a new generalization is proposed to describe the nonlinear elasto-inelastic cyclic strain-stress behavior of polycrystals notably under biaxial cyclic loading paths. In this context, this generalization considers a compressible and linear anisotropic granular elastic strain behavior coupled with damage. The model is expressed in the framework of the time dependent plasticity for a small strain assumption. It is assumed that a damage variable initiates at the mesoscopic (granular) level where the plastic strain localization phenomenon takes place. The associated thermodynamic force of the damage variable is determined using the concept of total granular energy (elastic and inelastic). The transition of the elastic strain from the single to the polycrystal is modified due to its explicit coupling with damage. Comparisons between predicted and experimental results are conducted describing the low-cycle fatigue behavior of the aluminum alloy 2024 under different complex cyclic loading paths. It is demonstrated that the model has a reasonable ability in describing the cyclic behavior of this alloy. Qualitatively, the model is tested under different cyclic loading paths with stress-controlled condition describing especially the ratcheting behavior of the alloy. In fact, the effects of the applied mean stress on the predicted overall elasto-inelastic behavior and on the fatigue life are carefully studied. It shows the dependence of the fatigue life on the mean stress value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.