Abstract

Determinism and non-linear behaviour in log-return and conditional volatility time series of the stock market index is examined for twenty-six countries. For this goal, the principal statistical techniques used in this study are a robust estimator of correlation dimension, a normalized non-linear prediction error, and pseudo-periodic surrogate data method. The proposed approach indicates, first, the stochastic behaviour of all log-return time series. Second, the inability of local linear, ARMA, or state- dependent noise models (such as ARCH, GARCH, and EGARCH) to describe its structure for the frontier, emerging, and developed markets. The same stochastic behaviour of conditional volatility time series, estimated by the stochastic volatility model with moving average innovations, is detected. This finding proves the efficiency of the stochastic volatility model compared with some analysed types of GARCH models for all studied markets. JEL Classification: C12, C52, D53, E44

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.