Abstract
In this brief note, we will show how in principle to find all units in the integral group ring ZG, whenever G is a finite group such that and Z(G) each have exponent 2, 3, 4 or 6. Special cases include the dihedral group of order 8, whose units were previously computed by Polcino Milies [5], and the group discussed by Ritter and Sehgal [6]. Other examples of noncommutative integral group rings whose units have been computed include , but in general very little progress has been made in this direction. For basic information on units in group rings, the reader is referred to Sehgal [7].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.