Abstract

We evaluated an eleven year data set to assess trophic state and nutrient limitation in Lake Whatcom, an oligotrophic, soft water, chain lake located in the Puget Sound lowlands of Washington (U.S.A.). Although total phosphorus (TP) and soluble reactive phosphate (SRP) concentrations were relatively low throughout the lake, there were significant differences between the northern basin (Site 1) and the other sampling sites (Sites 2–4). Nonparametric correlation coefficients (Kendall's τβ) were highest between chlorophyll (CHL), Secchi depth (SD), total nitrogen (TN), and dissolved inorganic nitrogen (DIN). Late summer algal biomass correlated best with DIN and TP. Trophic State Indices based on TP, TN, CHL and SD revealed that although algal growth was most likely phosphorus limited throughout the year, the northern basin of the lake may have developed nitrogen co-limitation during late summer and fall. During this period, N/P ratios were often less than 20, and in 1998 the epilimnetic DIN concentrations dropped below 20 μg l−1 while DIN/TP ratios fell below 4. Reviews of the literature suggest that while co-limitation by phosphorus and nitrogen is fairly common in unproductive lakes, the patterns seen in Lake Whatcom were more similar to those reported for eutrophic lakes experiencing secondary nitrogen limitation resulting from excess phosphorus loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.