Abstract
The oxygen evolution reaction (OER) from water is a sequential oxidation reaction process, involved in transformation of multiple reaction intermediates. For photo(electro)catalytic OER, revealing the intermediates transformation kinetics is quite challenging due to its coupling with photogenerated charge dynamics. Herein, we specifically study the transformation kinetics of the OER intermediates in rationally thin hematite photoanodes through increasing the ratio between surface intermediates and photogenerated charges in bulk. We directly identify the formation and consumption kinetics of one-hole OER intermediate (FeIV═O) in photoelectrochemical water oxidation using operando transient absorption (TA) spectroscopy. The microsecond formation kinetics of the FeIV═O species are sensitively changed by the excitation mode of Fe2O3. The subsecond consumption kinetics are closely dependent on surface FeIV═O species density, demonstrating that the cooperation of FeIV═O intermediates is the key to accelerating water oxidation kinetics on the Fe2O3 surface. This work provides insight into understanding and controlling water oxidation reaction kinetics on Fe2O3 surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.