Abstract
An artificial neural (ANN) network was trained to recognize the stress intensity factor in the interval from microcrack to fracture from acoustic emission (AE) measurements on compact tension specimens. The specimens were made from structural steel SWS490B whilst the ANN had a 5-14-1 structure. The number of neurons in the input layers was five inputs of the AE parameters such as ring-down counts, rise time, energy, event duration and peak amplitude. The performance of the ANN was tested using a specific set of the AE data. The ANN is a promising tool for predicting the stress intensity factor of material using AE data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.