Abstract
Abstract The article proposes a method for determining the rational motion intensity of specific train traffic flows on railway transport corridors with account for balance of expenses on traction resources and cargo owners. A mathematical model based on stochastic optimization is developed, which allows to optimize, in the conditions of risks, the interval between trailing trains on the railway lines taking into account the limited resources of the traction rolling stock, the capacity of the stations and freight fronts at the cargo destination point. Solving this mathematical model allows to find a balance between the expenses for movement of train traffic flows from different railway lines to their terminal reference station and the expenses of a consignee, subject to the limitations of the technological logistics chain in cargo transportation. For the solution of this mathematical model, a Real-coded Genetic Algorithm (RGA) was used.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.