Abstract

We present a gradient-descent-based approach to determining the projected electrostatic potential from four-dimensional scanning transmission electron microscopy measurements of a periodic, crystalline material even when dynamical scattering occurs. The method solves for the scattering matrix as an intermediate step, but overcomes the so-called truncation problem that limited previous scattering-matrix-based projected structure determination methods. Gradient descent is made efficient by using analytic expressions for the gradients. Through simulated case studies, we show that iteratively improving the scattering matrix determination can significantly improve the accuracy of the projected structure determination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.