Abstract

Sulfonamides are commonly used antibacterials in commercial poultry, contributing toward the development of multidrug-resistant (MDR) phenotypes among Escherichia coli and that has emerged as global concern. The current study aimed to assess the sulfonamide resistance among isolated E. coli strains among commercial broilers. The bacterial strains were identified from fecal samples (n = 100) using selective media, followed by initial identification based on biochemical profiles. The susceptibility was determined by measuring the minimum inhibitory concentration (MIC) against sulfamethoxazole. The study also evaluated mobile genetic elements (MGEs), the mediators of antibiotic resistance, by amplification of plasmid DNA using specific primer PCR. Additionally, the isolates were subjected to multilocus sequence typing (MLST) analysis to investigate the genetic diversity among E. coli carrying sulfonamide resistance genes. The results revealed that 58% (58/100) E. coli strains were resistant to sulfonamides, with 36.20% (21/58) of the strains exhibiting an MIC breakpoint ≥512 µg/mL. PCR analysis showed that 42.85% (9/21) of the strains harbored the sul-1 gene, while 38.09% (8/21) carried the sul-2 gene, and 19.04% (4/21) had both genes. No isolate showed the presence of the sul-3 gene. Furthermore, class 1 and class 2 integrons were identified among 80.95% (17/21) and 19.04% (4/21) of the strains, respectively. MLST analysis confirmed that the strains belonged to sequence types (STs) including ST1638, ST155, ST48, ST350, ST23, ST156, and ST746. These findings underscore the diversity among E. coli strains in commercial poultry, which poses a significant risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call