Abstract

Cyclic benziodoxole systems have become a premier scaffold for the design of electrophilic transfer reagents. A particularly intriguing aspect is the fundamental II–IIII tautomerism about the hypervalent bond, which has led in certain cases to a surprising re-evaluation of the classic hypervalent structure. Thus, through a combination of 17O NMR spectroscopy at natural abundance with DFT calculations, we establish a convenient method to provide solution-phase structural insights for this class of ubiquitous reagents. In particular, we confirm that Shen’s revised, electrophilic SCF3-transfer reagent also adopts an "acyclic" thioperoxide tautomeric form in solution. After calibration, the approach described herein likely provides a more general and direct method to distinguish between cyclic and acyclic structural features based on a single experimental 17O NMR spectrum and a computationally-derived isotropic shift value. Furthermore, we apply this structural elucidation technique to predict the constitution of an electrophilic iodine-based cyano-transfer reagent as an NC–I–O motif and study the acid-mediated activation of Togni's trifluoromethylation reagent.

Highlights

  • The remarkable stability and reactivity of Togni's hypervalent iodine-based trifluoromethylation reagents (e.g., 4a) [1] have inspired the development of analogous compounds, including a well-known SCF3-transfer reagent 5 in 2013 by Shen and co-workers [2,3]

  • The structural reassignment was prompted by a series of remarkable, detailed inspections of 1H NMR spectra of precursors and congeners

  • Acyclic isomer 5b is predicted to be thermodynamically favored over the cyclic form 5a by more than 10 kcal/mol by DFT calculations [5]

Read more

Summary

Introduction

The remarkable stability and reactivity of Togni's hypervalent iodine-based trifluoromethylation reagents (e.g., 4a) [1] have inspired the development of analogous compounds, including a well-known SCF3-transfer reagent 5 in 2013 by Shen and co-workers [2,3]. While at the time the proposed cyclic hypervalent iodine structure 5a appeared reasonable in analogy to other well-established transfer reagents, it was Beilstein J. Establishing a reliable way to differentiate cyclic (a) from acyclic (b) isomers in solution would facilitate future structure determination of similar iodine-based group-transfer reagents and provide greater mechanistic insight into reactivity of these reagents (Figure 1).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call