Abstract

Abstract Sediment transport between the emerged land masses and deep marine basins is a fundamental process that affects the exploitation of resources and protection of the environment and its ecosystems. Sediment transport models on the continental shelf are often very complex and subject to semiempirical or empirical equilibrium transport equations that relate sediment fluxes and turbulence to physical properties such as velocity, depth, and characteristic bed-load sediment particle sizes. In engineering applications, errors in these physical properties affect the accuracy of the sediment fluxes. The present analysis details the importance of physical properties to the bed-load fluxes and suggests which parameters have more influence on the final result by providing insight into the relative strengths, weaknesses, and limitations of all the selected 52 bed-load equations for noncohesive particles (sand and gravel are treated separately). Various parameters were first investigated individually to pinpoin...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call