Abstract

Metal-oxide nanoparticles (MONPs) are of broad interest as catalysts and catalyst supports in automotive, industrial, and biomedical applications. In water-containing environments, MONPs adsorb hydroxyl groups at nanoparticle corners, edges, and faces. While adsorbed surface groups will influence MONP properties, including oxidation state and the availability and accessibility of catalytically active sites, determination of the density, distribution, and effects of such groups is experimentally challenging. Here, focusing on CeO2 nanoparticles (CNPs) as a representative MONP system, we report computational and experimental results showing that, for small, hydroxylated CNPs, the presence or absence of strongly infrared (IR) absorbing O–H stretching modes associated with O–H–OH complexes present on fully oxidized CNPs can be used to probe the configuration of surface-adsorbed hydroxyl groups and the CNP net oxidation state. As the vibrational modes of O–H–OH complexes are distinct from those of molecular water (3240 vs 3404 cm–1), these results demonstrate that IR absorption spectroscopy can be used to determine the oxidation state of small, hydroxylated CNPs, as well as other MONPs, more generally, in water-containing environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.