Abstract

While interferometric methods exist for classifying vortex states of light, these techniques usually require destroying the beam of interest to determine the light’s OAM. A recent two-color pump-probe experiment employed strong field ionization and beam sculpting to classify vortex beams. Here, we propose an alternative strong-field method for distinguishing OAM states of light which does not require beam sculpting and instead utilizes a noncollinear terahertz standing wave to probe ionized electrons. We then use classical trajectory Monte Carlo (CTMC) methods to simulate strong-field ionization of helium under this configuration with the terahertz field both on and off. We find that the resulting electron momenta distributions can be used to extract the OAM of the beam, as long as the vortex beam spot size does not exceed 1/4 the terahertz pulse’s wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call