Abstract

The complex genetics of human complement C4 with unusually frequent variations in the size and number of C4A and C4B, as well as their neighboring genes, in the major histocompatibility complex has been a hurdle for accurate epidemiological studies of diseases associated with C4. A comprehensive series of novel or improved techniques has been developed to determine the total gene number of C4 and the relative dosages of C4A and C4B in a diploid genome. These techniques include (1) definitive genomic restriction-fragment-length polymorphisms (RFLPs) based on the discrete duplication patterns of the RCCX (RP-C4-CYP21-TNX) modules and on the specific nucleotide changes for C4A and C4B isotypes; (2) module-specific PCR to give information on the total number of C4 genes by comparing the relative quantities of RP1- or TNXB-specific fragments with TNXA-RP2 fragments; (3) labeled-primer single-cycle DNA polymerization procedure of amplified C4d genomic DNA for diagnostic RFLP analysis of C4A and C4B; and (4) a highly reproducible long-range-mapping method that employs PmeI-digested genomic DNA for pulsed-field gel electrophoresis, to yield precise information on the number of long and short C4 genes in a haplotype. Applications of these vigorously tested techniques may clarify the roles that human C4A and C4B gene-dosage variations play in infectious and autoimmune diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.