Abstract

Determining the number of pure chemical components is an important step for various chemical data analysis methods like cluster analysis, principal component analysis, and spectral unmixing. In this paper, a method of eigenvalue sequences transform is proposed to improve the performance in determining the number of chemical components in spectral matrix. The proposed method converts the spectral data cube to eigenvalue sequences by applying the singular value decomposition technique firstly. Then, the method innovatively transforms the normalized eigenvalue sequences into a redefined coordinate system and detects the number of chemical components by searching the sequence of the highest point. Since the proposed method identifies the number of chemical components from the angle of geometry, all processes need not involve the use of time‐consuming iterations, extensive calibration tables, or pseudostatistical hypothesis. This paper also evaluates the applications of the proposed method with simulation and real‐world spectral data. The evaluation results show that the method has stronger robustness, better accuracy, and higher automaticity in estimating the number of chemical components by comparing with some calibration methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.