Abstract
We develop a new estimator of the number of factors in the approximate factor models. The estimator works well even when the idiosyncratic terms are substantially correlated. It is based on the fact, established in the paper, that any finite number of the largest “idiosyncratic” eigenvalues of the sample covariance matrix cluster around a single point. In contrast, all the “systematic” eigenvalues, the number of which equals the number of factors, diverge to infinity. The estimator consistently separates the diverging eigenvalues from the cluster and counts the number of the separated eigenvalues. We consider a macroeconomic and a financial application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.