Abstract

AbstractThe thickness and variability of the Saturnian magnetodisc current sheet is investigated using the Cassini magnetometer data set. Cassini performed 66 fast, steep crossings of the equatorial current sheet where a clear signature in the magnetic field data allowed for a direct determination of its thickness and the offset of its center. The average, or nominal, current sheet half‐thickness is 1.3 RS, where RS is the equatorial radius of Saturn, equal to 60,268 km. This is thinner than previously calculated, but both spatial and temporal dependencies are identified. The current sheet is thicker and more variable by a factor ∼2 on the nightside compared to the dayside, ranging from 0.5–3 RS. The current sheet is on average 50% thicker in the nightside quasi‐dipolar region (≤15 RS) compared to the dayside. These results are consistent with the presence of a noon‐midnight electric field at Saturn that produces a hotter plasma population on the nightside compared to the dayside. It is also shown that the current sheet becomes significantly thinner in the outer region of the nightside, while staying approximately constant with radial distance on the dayside, reflecting the dayside compression of the magnetosphere by the solar wind. Some of the variability is well characterized by the planetary period oscillations (PPOs). However, we also find evidence for non‐PPO drivers of variability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.