Abstract
Determination of a limit of detection (LoD) for surface bound antibodies is crucial for the development and deployment of sensitive bioassays. The measurement of very low concentrations of surface bound antibodies is also important in the manufacturing of pharmaceutical products such as antibody-conjugated pharmaceuticals. Low concentrations are required to avoid an immune response from the target host. Enzyme-linked immunosorbent assay (ELISA), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to determine the LoD for the surface bound antibody (antiepidermal growth factor receptor antibody) on silicon substrates. Antibody solution concentrations between 10 μg/ml and 1 ng/ml and a control (antibody-free buffer solution) were employed, and the detection performance of each technique was compared. For this system, the ELISA LoD was 100 ng/ml and the XPS LoD was 1 μg/ml, corresponding to an estimated surface concentration of 49 ± 7 ng/cm2 using a 1 μg/ml solution. Due to the multivariate complexity of ToF-SIMS data, analysis was carried out using three different methods, peak ratio calculations, principal component analysis, and artificial neural network analysis. The use of multivariate analysis with this dataset offers an unbiased analytical approach based on the peaks selected from ToF-SIMS data. The results estimate a ToF-SIMS LoD between applied antibody concentrations of 10 and 100 ng/mL. For surface bound antibodies on a silicon substrate, the LoD is below an estimated surface concentration of 49 ng/cm2. The authors have determined the LoD for this system using ELISA, XPS, and ToF-SIMS with multivariate analyses, with ToF-SIMS offering an order of magnitude better detection over ELISA and 2 orders of magnitude better detection over XPS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.