Abstract

The steels from which the components of mining machinery are constructed must be based primarily on knowledge of their behaviour under environmental conditions and of the excavation technology. Secondly, the structural changes undergone by the materials due to mechanical and thermal processing and the stresses generated by the action of excavation forces that can induce internal stresses at a level that is difficult to determine must be taken into account. Determining the level of structural and mechanical degradation involves sampling the load-bearing structure elements of the excavation and storage machinery for analysis of the mechanical and chemical properties of the component materials. The paper focuses on issues related to the structural and mechanical degradation of steel as a material for parts of mining machinery. In this paper, a methodology for evaluating the degree of structural degradation of three types of bucket wheel excavators with different operating hours (ERc 1400-30/7-07 with 50,400 h, ERc 1400-30/7-08 with 69,264 h, and SRs 1300-26/3.5 with 112,000 h) is proposed. The methodology aims to provide a quantitative assessment of the structural degradation by considering the specific elastic limit of the material used in the machines and the number of hours of operation. This method uses a minimum set of destructive mechanical tests, such as tensile, resilience for three working temperatures, chemical analysis, and durometry on resistance elements taken from the machine, as well as the use of Weibull analysis. By combining this information with the number of hours of operation, a comprehensive evaluation can be made to determine the extent of degradation and potential maintenance requirements. The use of a minimum set of mechanical tests ensures an efficient and cost-effective approach to assessing the structural integrity of these machines. The metallographic analysis highlighted a predominant and defined form of grain rearrangement in the E14-07 machine after only 50,400 h. The constituents identified in the samples taken from the three machines are ferrite and pearlite. The highest hardness of the samples was recorded for the E14-08 machine, with values between 162–165 HV10. For bucket wheel excavators E14-07 and E14-08, the material structure showed elongated grains in the direction of deformation, compared to the material structure of E13-04, which has finely equiaxed grains. As a result of the research, final conclusions were formulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.