Abstract
Leaf area is a component of crop growth and yield prediction models. Few studies have used the structure from motion (SfM) algorithm, which is based on the principles of traditional stereophotogrammetry, to obtain the leaf area index (LAI). Thus, the objective of this study was to follow the evolution of the LAI and percentage of land cover (%COV) in coffee plants, using pre-established equations and plant measurements obtained from generated 3-D point clouds, combined with the application of the SfM algorithm to digital images recorded by a camera coupled to an unmanned aerial vehicle (UAV). The experiment was conducted in a coffee plantation located in southeastern Brazil. A rotary wing UAV containing a conventional camera was used. The images were collected once per month for 12 months. Image processing was performed using PhotoScan software. Regression analysis and spatial analysis were performed using R and GeoDa software, respectively. The resulting %COV data had R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and RMSE values of 89% and 3.41, respectively, while those for LAI had R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and RMSE of 88% and 0.47, respectively. Significant %COV results were obtained in the months of January, February, and March of 2018. There was significant autocorrelation for the LAI values from January to May 2018, with most blocks in the central and center-west regions presenting LAI values > 3.0. It was possible to monitor the temporal and spatial behavior of the LAI and %COV, allowing for the conclusion that this methodology generated results that are consistent with the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.