Abstract
The aim of this study was to determine the invasiveness of ground-glass nodules (GGNs) using a 3D multi-task deep learning network. We propose a novel architecture based on 3D multi-task learning to determine the invasiveness of GGNs. In total, 770 patients with 909 GGNs who underwent lung CT scans were enrolled. The patients were divided into the training (n = 626) and test sets (n = 144). In the test set, invasiveness was classified using deep learning into three categories: atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive pulmonary adenocarcinoma (IA). Furthermore, binary classifications (AAH/AIS/MIA vs. IA) were made by two thoracic radiologists and compared with the deep learning results. In the three-category classification task, the sensitivity, specificity, and accuracy were 65.41%, 82.21%, and 64.9%, respectively. In the binary classification task, the sensitivity, specificity, accuracy, and area under the ROC curve (AUC) values were 69.57%, 95.24%, 87.42%, and 0.89, respectively. In the visual assessment of GGN invasiveness of binary classification by the two thoracic radiologists, the sensitivity, specificity, and accuracy of the senior and junior radiologists were 58.93%, 90.51%, and 81.35% and 76.79%, 55.47%, and 61.66%, respectively. The proposed multi-task deep learning model achieved good classification results in determining the invasiveness of GGNs. This model may help to select patients with invasive lesions who need surgery and the proper surgical methods. • The proposed multi-task model has achieved good classification results for the invasiveness of GGNs. • The proposed network includes a classification and segmentation branch to learn global and regional features, respectively. • The multi-task model could assist doctors in selecting patients with invasive lesions who need surgery and choosing appropriate surgical methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.