Abstract
With the aid of optical modeling, the internal quantum efficiencies of organic Bulk Heterojunction (oBHJ) photovoltaic devices based on low band gap polymer of poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5′-diyl] (Si-PCPDTBT) blended with the acceptors of 1-(3-Methoxycarbonyl) propyl-1-phenyl [6,6] C61 (PCBM) and bis–adduct (bis–PCBM) are determined. The Si-PCPDTBT:bis–PCBM devices show considerably lower short circuit current density ( J sc) as compared to the Si-PCPDTBT:PCBM devices. The results show that 30% of this smaller J sc is due to the lower optical absorption of bis–PCBM, while the major losses originate from the electrical losses. It is found that for the best Si-PCPDTBT:bis–PCBM devices with an active layer thickness in the range of 70–100 nm, the inefficient charge generation within the bis–PCBM domains is the major contribution to the whole losses. Increasing the active layer thickness of Si-PCPDTBT:bis–PCBM device significantly enhances recombination losses in polymer/bis–fullerene matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.