Abstract

Protein ingestion is a potent stimulator of skeletal muscle protein synthesis (MPS). However, older adults demonstrate resistance to anabolic stimuli. Some evidence has demonstrated that a larger acute protein dose is required in older compared to younger adults to elicit the same synthetic response, suggesting that older adults should be consuming higher habitual dietary protein to optimise muscle mass. However, limited research has explored dietary habits in different age groups or the relationship between habitual dietary intake and mechanistic physiological parameters associated with muscle mass and function. This work investigated the effect of habitual dietary intake in young (n = 10, 25.9 (3.2y)) and older (n = 16, 70.2 (3.2y)) community-dwelling adults (16:10 male: female) on physiological muscle parameters. Dietary intake was assessed using four-day diet diaries. Post-absorptive MPS and MPS responses to feeding (4.25x basal metabolic rate; 16% protein) were determined in muscle biopsies of the m. vastus lateralis via stable isotope tracer ([1, 2−13C2]-leucine) infusions with mass-spectrometric analyses. Body composition was measured by dual-energy x-ray absorptiometry. Whole body strength was assessed via 1-repetition maximum assessments. No significant differences in habitual dietary intake (protein, fat, carbohydrate and leucine as g.kgWBLM−1.day−1) were observed between age groups. Whole-body lean mass (61.8 ± 9.9 vs. 49.8 ± 11.9 kg, p = 0.01) and knee-extensor strength (87.7 ± 28.3 vs. 56.8 ± 16.4 kg, p = 0.002) were significantly higher in young adults. Habitual protein intake (g.kg−1.day−1) was not associated with whole-body lean mass, upper-leg lean mass, whole-body strength, knee-extensor strength, basal MPS or fed-state MPS across both age groups. These findings suggest that differences in muscle mass and strength parameters between youth and older age are not explained by differences in habitual dietary protein intake. Further research with a larger sample size is needed to fully explore these relationships and inform on interventions to mitigate sarcopenia development.

Highlights

  • We are currently living with an ageing population, with the number of older adults aged over 65 expected to accelerate from ~542 million in 2010 to nearly 1.5 billion in2050 [1]

  • Given that contractile activity and essential amino acids (EAAs; [8,9]) are accepted as the two most potent anabolic stimuli, sarcopenia is likely aggravated by reductions in physical activity and/or lower dietary protein intake, both of which are reported with advancing age [10], and each of which have been shown to be associated with low muscle mass in older adults [11,12]

  • There was no significant difference in relative protein (Figure 1A), fat (Figure 1B), carbohydrate (Figure 1C) or leucine (Figure 1D) intake between young and older adults when expressed relative to whole body lean mass (g or mg.kgWBLM−1 .day−1 )

Read more

Summary

Introduction

We are currently living with an ageing population, with the number of older adults aged over 65 expected to accelerate from ~542 million in 2010 to nearly 1.5 billion in2050 [1]. Increasing age is associated with a decline in muscle mass and function. In addition to losses of muscle mass and function, and recognised in the latest consensus on sarcopenia definition and diagnosis from the European Working Group on Sarcopenia in Older People (EWGSOP) [5], declines in muscle quality are implicated in the development of sarcopenia, in influencing muscle function [6]. Given that contractile activity (i.e., exercise, and resistance exercise [8]) and essential amino acids (EAAs; [8,9]) are accepted as the two most potent anabolic stimuli, sarcopenia is likely aggravated by reductions in physical activity and/or lower dietary protein intake, both of which are reported with advancing age [10], and each of which have been shown to be associated with low muscle mass in older adults [11,12]. It has been demonstrated that the muscle of older adults is not able to robustly increase skeletal muscle protein synthesis (MPS) in response to these key anabolic stimuli (i.e., resistance exercise [13] and hyperaminoacidemia [6,14]) when compared to younger individuals

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call