Abstract
Most of the fuels used in internal combustion engines are liquid fuels. The magnetic behavior of fuel leads to a change in the interaction of hydrocarbon and oxygen molecules. This study aimed to evaluate the fuel consumption and engine vibration (time domain) of the Perkins A63544 diesel engine using magnetized fuel. The vibration of an internal combustion engine can cause failure in engine components and discomfort and injury to users. Engine vibration behavior changes due to changes in fuel types and engine combustion. Therefore, in this study, the vibration behavior of the tractor engine (Perkins model, four-stroke, direct injection diesel) was evaluated in stationary mode at different engine speeds due to changes in fuel types. Three accelerometers (CTC AC102 model) were used to measure the vibration acceleration. The fuels used included diesel as a normal control and fuels that had been subjected to magnetic field intensities of 1000, 2000, 3000, and 4000 gauss. The longitudinal, vertical, and lateral vibration signals with 5 levels of engine speed were measured. The results illustrated that the vibration root mean square (RMS) values were essentially (p < 0.01) affected by the engine speed, fuel type, and their interactions. It was found that for the 4000-gauss magnetized fuel, the average vibration acceleration using the five velocity settings reduced by 15%, 15.30%, 12.40%, 12.35%, and 15.38% compared to the respective control fuels. The results showed that engine fuel consumption and specific fuel consumption decreased by 2.3% using the 4000-gauss magnetized fuel compared with the normal control fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.