Abstract

To evaluate the potential anti-aging ability of Eucommia ulmoides, four characteristic components (chlorogenic acid, geniposidic acid, aucubin, quercetin) were selected to assess their effects on H2O2-induced oxidative damage model of human umbilical vein endothelial cell (HUVEC). Oxidative damage indexes, inflammatory factors, cell cycle, cell apoptosis, cell senescence, and their related proteins were analyzed by methyl thiazolyl tetrazolium (MTT) assay, enzyme-linked immunosorbent assay (ELISA), propidium iodide (PI) staining, annexin V-FITC/ PI double staining, SA β-galactosidase staining, and western blotting (WB). The results showed that H2O2- induced cell growth inhibition rate decreased as supplementation with characteristic components when compared to H2O2 group. Meanwhile, the contents of antioxidant indexes (reactive oxygen species, lactate dehydrogenase, molondialdehyde, superoxide dismutase, glutathione), inflammatory factors (nuclear factor kappa-B, intercellular cell adhesion molecule-1, vascular cell adhesion protein 1), and functional factors (NO, Endothelin-1) in characteristic components treated groups improved if comparison with H2O2 group, suggesting the characteristic components of E. ulmoides could alleviate H2O2-induced oxidative damage. Moreover, cell cycle, cell apoptosis, cell senescence, and their related proteins under characteristic components treatment exhibited a better effect than under H2O2 treatment, implying the characteristic components could participate in anti-aging via multiple pathways. These results manifested that the characteristic components of E. ulmoides posses the capacity of anti-aging, which provided a basis for investigating the anti-aging ability of E. ulmoides itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.