Abstract

BackgroundOffspring of consanguineous couples are at increased risk of congenital disorders. The risk increases as parents are more closely related. Individuals that have the same degree of relatedness according to their pedigree, show variable genomic kinship coefficients. To investigate whether we can differentiate between couples with high- and low risk for offspring with congenital disorders, we have compared the genomic kinship coefficient of consanguineous parents with a child affected with an autosomal recessive disorder with that of consanguineous parents with only healthy children, corrected for the degree of pedigree relatedness.Methods151 consanguineous couples (73 cases and 78 controls) from 10 different ethnic backgrounds were genotyped on the Affymetrix platform and passed quality control checks. After pruning SNPs in linkage disequilibrium, 57,358 SNPs remained. Kinship coefficients were calculated using three different toolsets: PLINK, King and IBDelphi, yielding five different estimates (IBDelphi, PLINK (all), PLINK (by population), King robust (all) and King homo (by population)). We performed a one-sided Mann Whitney test to investigate whether the median relative difference regarding observed and expected kinship coefficients is bigger for cases than for controls. Furthermore, we fitted a mixed effects linear model to correct for a possible population effect.ResultsAlthough the estimated degrees of genomic relatedness with the different toolsets show substantial variability, correlation measures between the different estimators demonstrated moderate to strong correlations. Controls have higher point estimates for genomic kinship coefficients. The one-sided Mann Whitney test did not show any evidence for a higher median relative difference for cases compared to controls. Neither did the regression analysis exhibit a positive association between case–control status and genomic kinship coefficient.ConclusionsIn this case–control setting, in which we compared consanguineous couples corrected for degree of pedigree relatedness, a higher degree of genomic relatedness was not significantly associated with a higher likelihood of having an affected child. Further translational research should focus on which parts of the genome and which pathogenic mutations couples are sharing. Looking at relatedness coefficients by determining genome-wide SNPs does not seem to be an effective measure for prospective risk assessment in consanguineous parents.Electronic supplementary materialThe online version of this article (doi:10.1186/s12881-015-0191-0) contains supplementary material, which is available to authorized users.

Highlights

  • Offspring of consanguineous couples are at increased risk of congenital disorders

  • Consanguinity is associated with an increase in congenital/hereditary disorders in offspring, in particular autosomal recessive (AR) disorders

  • Given the estimated excess risk of 1.7-2.8 %, it can be concluded that four times those percentages (6.8-11.2 %) of all first-cousin couples are at high risk of 25 % for each of their children to be affected by the associated disorder [1, 3]

Read more

Summary

Introduction

Offspring of consanguineous couples are at increased risk of congenital disorders. The risk increases as parents are more closely related. To investigate whether we can differentiate between couples with high- and low risk for offspring with congenital disorders, we have compared the genomic kinship coefficient of consanguineous parents with a child affected with an autosomal recessive disorder with that of consanguineous parents with only healthy children, corrected for the degree of pedigree relatedness. The risk of being a carrier couple rises substantially with evidence of a family history for a given genetic disorder [2], but often no family history is known and yet the risk is increased This makes personalized risk assessment difficult, and discriminating between high-risk- (25 % or more) and low-risk couples (comparable to the risk for the general population) often impossible

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.