Abstract

The attractive force holding two polystyrene latex spheres in a doublet was measured by the method of differential electrophoresis. The two spheres of each doublet had different surface chemistries (e.g., sulfate and carboxylate) and different ζ potentials ζ1 and ζ2. The doublet acted as a dipole, and an applied electric field (E∞) caused the doublet to rotate such that the less negative sphere pointed in the direction of the field. Once the doublet was aligned, the tendency of the spheres to translate at different velocities produced a tension, the “electrophoretic displacement force”. This force, proportional to ζ2 − ζ1 and the applied electric field E∞, is calculated from solutions to the electrostatic and hydrodynamic equations. For our systems (5 μm diameter spheres, ζ2 − ζ1 ≈ 40 mV, E∞ ≈ 200 V/cm) the electrophoretic displacement force was 20−50 pN, which is more than a factor of 10 greater than the maximum attractive force predicted by DLVO theory for doublets in a secondary minimum. In no case could we break the doublets with the electrophoretic displacement force. We conclude that DLVO theory is inadequate for our colloidal system, either because the doublets were in a primary minimum (even though DLVO theory predicted an insurmountable energy barrier) or because the depth of the secondary minimum was more than a factor of 10 greater than predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.