Abstract
This study was aimed to characterize the distribution of colorectal cancer risk using family history of cancers by data mining. Family histories for 10,066 colorectal cancer cases recruited to population cancer registries of the Colon Cancer Family Registry were analyzed using a data mining framework. A novel index was developed to quantify familial cancer aggregation. Artificial neural network was used to identify distinct categories of familial risk. Standardized incidence ratios (SIRs) and corresponding 95% confidence intervals (CIs) of colorectal cancer were calculated for each category. We identified five major, and 66 minor categories of familial risk for developing colorectal cancer. The distribution the major risk categories were: (1) 7% of families (SIR = 7.11; 95% CI 6.65-7.59) had a strong family history of colorectal cancer; (2) 13% of families (SIR = 2.94; 95% CI 2.78-3.10) had a moderate family history of colorectal cancer; (3) 11% of families (SIR = 1.23; 95% CI 1.12-1.36) had a strong family history of breast cancer and a weak family history of colorectal cancer; (4) 9 % of families (SIR = 1.06; 95 % CI 0.96-1.18) had strong family history of prostate cancer and weak family history of colorectal cancer; and (5) 60% of families (SIR = 0.61; 95% CI 0.57-0.65) had a weak family history of all cancers. There is a wide variation of colorectal cancer risk that can be categorized by family history of cancer, with a strong gradient of colorectal cancer risk between the highest and lowest risk categories. The risk of colorectal cancer for people with the highest risk category of family history (7% of the population) was 12-times that for people in the lowest risk category (60%) of the population. Data mining was proven an effective approach for gaining insight into the underlying cancer aggregation patterns and for categorizing familial risk of colorectal cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.