Abstract

Microneedles are extremely small and minimally-invasive intradermal drug delivery devices that require controlled, accurate, and repeatable insertions into human skin to perform their functions. Due to high variability and elasticity of human skin, dynamic insertion methods are being sought to ensure success in microneedle insertions into the skin passed the tough stratum corneum layer. Dynamic microneedle insertions have not been thoroughly studied to identify and assess the key parameters influencing the skin fracture to date. Here, we have utilized a previously validated artificial mechanical human skin model to identify and evaluate the factors affecting microneedle insertion. It was determined that a microneedle's velocity at impact against the skin played the most crucial role in successfully inserting microneedle devices of different geometrical features (i.e., tip area) and array size (i.e., number of projections). The findings presented herein will facilitate the development of automated microneedle insertion devices that will enable user-friendly and error-free applications of microneedle technologies for medicine delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.