Abstract

Chemical plant growth regulators (PGRs) are important tools in greenhouse ornamental crop production because growers must increasingly meet specifications for plant shipping and marketability. However, the role of water quality parameters such as pH or alkalinity (bicarbonate in this study) on final PGR solution pH is not well documented and could impact efficacy. We assessed the interaction of PGR type and concentration on the final spray solution pH when combined with carrier water of varying pH and bicarbonate concentration. Eleven PGRs commonly used in floriculture (ancymidol, benzyladenine, chlormequat chloride, daminozide, dikegulac-sodium, ethephon, flurprimidol, gibberellic acid, gibberellic acid/benzyladenine, paclobutrazol, and uniconazole) at three concentrations (low, medium, and high recommended rates for each product) were added to reverse osmosis (RO) carrier water adjusted to four pH (5.3, 6.2, 7.2, 8.2) levels or added to tap carrier water adjusted to four bicarbonate concentrations (40, 86, 142, 293 mg·L−1 of CaCO3). Resultant solution pH levels were measured. Plant growth regulators were categorized as acidic, neutral, or basic in reaction based on the change of the carrier water pH on their addition. Benzyladenine, chlormequat chloride, gibberellic acid, and gibberellic acid/benzyladenine acted as weak acids when added to RO water, whereas daminozide, ethephon, and uniconazole reduced final solution pH from 1.25 to 5.75 pH units. Flurprimidol and paclobutrazol were neutral in reaction with final solution pH being similar to that of the RO carrier water before their addition. Ancymidol and dikegulac-sodium were basic in reaction, increasing final solution pH in RO carrier water up to 2.3 units. There was an interaction between chlormequat chloride concentration and RO carrier water pH on change in pH. When added to tap carrier water, final solution pH increased for all except the stronger acids, daminozide, ethephon, and uniconazole, where it decreased up to 3.5 units, and benzyladenine, where it decreased 0.35 units at 40 mg·L−1 bicarbonate. There was an interaction between PGR concentration and bicarbonate concentration in tap carrier water for daminozide and ethephon. The magnitude of change in pH (final solution pH minus initial carrier water pH) with the addition of each PGR was greater for RO than for tap water containing 40 to 293 mg·L−1 bicarbonate for all 11 PGRs tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call